Signing into One Billion Mobile App Accounts
Effortlessly with OAuth2.0

Ronghai Yang Wing Cheong Lau Tianyu Liu
The Chinese University of Hong Kong

Abstract

OAuth2.0 protocol has been widely adopted by mainstream Identity Providers
(IdPs) to support Single-Sign-On service. Since this protocol was originally de-
signed to serve the authorization need for 3rd party websites, different pitfalls have
been uncovered when adapting OAuth to support mobile app authentication. To
the best of our knowledge, all the attacks discovered so far, including BlackHat
USA’16 [3], CCS’14 [2] and ACSAC’15 [5], require to interact with the victim,
for example via malicious apps or network eavesdropping, etc. On the contrary,
we have discovered a new type of widespread but incorrect usages of OAuth by
3rd party mobile app developers, which can be exploited remotely and solely by
the attacker to sign into a victim’s mobile app account without any involvement/
awareness of the victim. To demonstrate the prevalence and severe impact of this
vulnerability, we have developed an exploit to examine the implementations of 600
top-ranked US and Chinese Android Apps which use the OAuth2.0-based authen-
tication service provided by three top-tier IdPs, namely Facebook, Google or Sina.
Our empirical results are alarming: on average, 41.21% of these apps are vulner-
able to this new attack. We have reported our findings to the affected IdPs, and
received their acknowledgements/ rewards in various ways.

1 Introduction

Riding on the widespread user adoption of OAuth2.0-based Single-Sign-On (SSO) ser-
vices for 3rd party websites, many major Identity Providers (IdPs) such as Facebook,
Google and Sina, have recently adapted the OAuth2.0 protocol to support SSO for 3rd-
party Mobile Apps on their social-media platform. However, due to the differences in
the end-to-end system setup and operating environment for mobile app SSO services,
the original OAuth2.0 protocol becomes under-specified. In particular, the OAuth2.0
standard does not cover or define the critical security requirements and protocol de-
tails to govern the interactions between the 3rd-party (client-side) mobile app and its
corresponding backend server during the SSO process. As a result, various IdPs have
developed different home-brewed extensions of OAuth2.0-based Application Program-
ming Interface (API) to support SSO of 3rd-party mobile apps in their own platform.
Unfortunately, the implicit security assumptions and operational requirements of such
home-brewed adaptations/ APIs are often not clearly documented or well-understood

e.g juo 2 facebook G AL - facebook
(i) web server (iii) user browser (ii) 1dP server (a?psg(;r?lzry (c) client @) client side (b) IdP serve_r
1). User visits App 3) authentication and I S 3PP 1 appinfo 1P PP icati
—— ol 1.appinfo _ 2.authentication &
2). Redirection authorization uthorization
5) redirection: code 5. AT + IMDb 4. AT+user |uthonization |
- 4) eode user info info 3. AT + userinfo

6) Access token request: code + redirect_uri + App secret
7) AT

6. AT debug
7. AT information

8) API request for user resource + AT 8. API request for user resource + AT

9) user resource in IdP 9 . user resource in IdP

10). user data ° 10. user data MDD
[—>

(a) The protocol flow of web-based OAuth imple- (b) The protocol flow of mobile OAuth implementa-
mentations tions

Figure 1: Compare the OAuth protocol flow between the website and the mobile
platform

by the 3rd-party mobile app developers. Worse still, there is also a lack of security-
focused SSO-API-usage-guidelines for the 3rd-party app developers.

These problems have led us to discover a new type of widespread, insecure im-
plementations of OAuth2.0-based SSO services among a large number of popular 3rd-
party mobile apps which use various top-tier IdPs. The root cause of this vulnerability
is a common, but misplaced trust in the authenticating information received by the 3rd
party app’s backend server from its own client-side mobile app, which in turn, relies
on potentially tampered information obtained from the client-side mobile app of the
IdP. Leveraging on this newly discovered vulnerability, we have developed a remote
exploit which enables an attacker to effortlessly sign into a victim’s mobile app ac-
count via OAuth2.0' without any need to trick or interact with the victim, for example
via malicious apps or network eavesdropping, efc. While our current attack is demon-
strated over the Android platform, the exploit itself is platform-agnostic: any iOS or
Android user of the vulnerable mobile app is affected as long as he/ she has used the
OAuth2.0-based SSO service with the app before.

2 Background

There are four parties involved to support SSO for 3rd party mobile App, namely, (a)
the backend server of the 3rd party mobile app, (b) the backend server of the IdP, (c)
the 3rd party (client-side) mobile app and (d) the client-side mobile app of the IdP. The
ultimate goal of OAuth is for the backend server of the IdP to issue an identity proof,
i.e., the access token, to the server of the 3rd party mobile app. Utilizing this access
token, the 3rd party app server can then retrieve user information hosted by the IdP
server so as to identify the user and log the user in.

2.1 The Protocol Flow of OAuth 2.0 on the Mobile Platform

Fig. 1 shows the call-flow when implementing the OAuth protocol on the website and
the mobile platform. For simplicity, we first introduce the protocol flow for the mo-

1For the rest of the paper, we use OAuth to denote OAuth 2.0 if not specified otherwise.

bile OAuth implementations and then point out the differences in the web-based SSO
services. Note that, neither the RFC nor the IdP provides a complete call-flow dia-
gram for the 3rd party mobile app developers since OAuth was not designed for mobile
apps. Nevertheless, there have been extensive efforts [2,3,5,6] on analyzing the OAuth
security under the mobile environment and one believed-to-be-secure realization is as
follows:

1. The user visits the third-party (client-side) mobile app and tries to log into the
mobile app with the IdP. The third-party client-side app sends its app information
(e.g., package name, signature and requested permissions, efc) to the client-side
app of the IdP via a secure channel provided by the operation system of the
mobile phone, e.g., intent for Android.

2. By calling the low-level system APISs, the client-side IdP app can verify whether
the app information of the 3rd-party app is correct or not. If so, the IdP client-
side app then sends an authorization request to its backend server.

3. The IdP server compares information from the authorization request and that pre-
registered by the 3rd party mobile app developers. If they are the same, the IdP
server would issue an access token (AT) together with the optional user profile
to the 3rd-party client-side mobile app via its own client-side app.

4. The client-side IdP app returns the access token (AT) to the 3rd-party client-side
app via the secure channel.

5. The 3rd-party client-side app sends AT to its backend server.

6. The 3rd party backend server should call the security-focused SSO-API provided
by the IdP to debug the access token.

7. After verifying the validity of the access token, the IdP server should respond the
3rd party app server with the authorization information including which app this
access token is issued to.

8. Only if the authorization information is correct can the 3rd party app server re-
trieve the user data with the access token.

9. The IdP server returns the user data associated with the access token.

10. Leveraging the user data, the 3rd party app server can then identify the user and
log the user in.

2.2 The OpenID Connect Protocol

Because OAuth2.0 was originally designed to support authorization, to adapt it for
authentication, it involves multiple high-latency round trips, i.e., Step 6 - Step 9 of
Fig. 1(b). To better support authentication (i.e., with less round-trips) using OAuth2.0,
IdPs like Google and Facebook have developed the OpenID Connect (OIDC) proto-
col [4] and its variants. Specifically, IdPs need to digitally sign the user profile (i.e.,

e.g - facebook
(a) 3rd party user device (b) IdP server
app server (C_é client (d) client side _
_ side app .
1.appinfo %% | 5 authentication &
5 AT + MDD 4. AT+ “ authorization
signed_para signed_para 3. AT+signed_para
< < yrd
6. user data {*name”:"alice”,
> IMDb “email”:"alice@gmail.com”,
B “user_id”:"1001” -
}

Figure 2: The protocol flow of OpenID Connect implemented on the mobile platform

signed_para). This signed user profile, as shown in Fig. 2, is then sent to the back-
end server of the 3rd party mobile app along with the original access token. Since the
signature cannot be tampered/ forged by an attacker, the 3rd-party app server can now
directly identify the user via the signature. In other words, the 3rd-party app server can
immediately extract the user profile from the signature without the high-latency API
calls.

2.3 Key Differences in the Website-based OAuth Implementations

While the differences in the protocol flows between websites and mobile platforms are
seemingly straightforward, such differences in fact have non-trivial security implica-
tions and have complicated the implementations on the mobile platforms. For example,
there are three entities, namely, (i) the 3rd party web-server, (ii) the backend server of
the IdP and (iii) the end-user’s browser (which acts as the user-agent under OAuth
terminology), involved in supporting OAuth2.0-based SSO for 3rd party websites, the
support of SSO for 3rd party mobile apps involves four different entities as aforemen-
tioned. Firstly, both (c) and (d) are running on the end-user devices and subject to
tampering. Secondly, the interactions as well as the associated security requirements
between (a) and (c), as well as those between (c) and (d) are outside the scope of the
OAuth2.0 protocol standard. Thirdly, with the presence of both (c) and (d) on the same
end-user device, it may be tempting for the 3rd-party mobile app developers to conduct
authentication exchange between (c) and (d) directly (as opposed to the direct verifica-
tion between (a) and (b), just like the case of direct authentication exchange between
(i) and (ii) as defined in the original OAuth2.0 standard). For another example, differ-
ent from web-based service providers, mobile application developers are often urged
by the IdPs to use a different authorization grant flow in OAuth which is tightly in-
tegrated with IdP-specific business logic, namely authorization code flow vs. implicit
flow. Furthermore, the client side of a typical mobile application is responsible for
more message exchange which, in contrast, is managed by the backend server in the
case of 3rd party websites (and their corresponding web-based services).

3rd party

3rd party

client-side

3rd party 3rd party client-side app server client-side app 1dP app IdP server
app server client-side app IdP app 1dP server sig(:elng;ra 2 AT+ 1, AT + signed_para
3.AT+userinfo_|2. AT+ user info 1 AT peerinio 4. user data signed_para | e alice”,
N\ 4. user data “email”:"alice@xxx",

query(user info)

(a) No verification of the access token

“user_id":"1001”

query(signed_para.user_id) I)

(b) No verification of the signature

Figure 3: The 3rd party app server does not verify the identity proof of the user

3rd party 3rd party client-side 3rd party 3rd party client-side
app server client-side app 1dP app ldPserver b server client-side app IdP app IdP server
" inf 2. AT+ user info 1. AT + user info 1. auth request query_db
query(user info) i 2. user info 3. auth request
3.AT query(user info)
5. user info 4. user info .user info 5. AT+ signed_para sig‘;'eAdT;ara
6. user data 7. user data -

(a) User information obtained via API call (b) User information obtained via Android account

management system

Figure 4: The 3rd party client-side app returns incorrect identity proof to its server
3 Different Types of Insecure Implementations
Despite the major differences, no clear developer guides are provided by IdPs to de-

mystify the possbile pitfalls for mobile OAuth implementations. As a result, 3rd party
mobile app developers have made different types of common but widespread mistakes

as follows:

1. As shown in Fig. 3(a), when IdP servers return user identity information (e.g.,
user id/email address) in addition to the original OAuth access token, many back-
end servers of 3rd-party apps simply (and incorrectly) login the user based on
the received user-id WITHOUT verifying whether the received user-id is indeed
bound to the issued OAuth access token.

2. Fig. 3(b) shows another case where Facebook and Google adopt the OpenlID
Connect protocol. In this case, IdPs need to digitally sign the user identity pro-
file so that the backend server of a 3rd party app can directly authenticate the
user by verifying this signature. However, some 3rd party apps never verify this
signature and simply extract the user-id from the payload of the signature. This
user-id is then treated as the identity proof without any authentication/ validation.

3. Regardless of the OAuth access token received from the IdP, some 3rd-party
mobile apps directly retrieve the user information from the mobile device it is
running on (e.g., either via the API call provided by the IdP server illustrated
in Fig. 4(a) or from the Android account management system which stores the
user’s Google accounts to support SSO service as shown in Fig. 4(b)). The client-
side mobile app then only sends the user identifier to its backend server as the
identity proof. Without the access token (for which the trust should be anchored),
3rd-party backend servers have no way to verify if the returned user identifier is
actually bound to the OAuth access token.

4 Exploiting the Vulnerability

Given the various incorrect implementations by 3rd party app developers, an attacker
therefore can log into a susceptible app as the victim by merely exploiting the victim’s
profile with the following steps:

1. As shown in Fig. 5, the attacker setups a ssl-enabled-MITM proxy, e.g., mitm-
proxy, for her own mobile device to monitor and tamper the network traffic going
into and leaving her device.

2. The attacker installs the vulnerable 3rd party app in her own mobile device.

3. The attacker signs into the vulnerable mobile app with OAuth using the attacker’s
own IdP login name and password.

4. During the OAuth message exchange triggered by Step 3, the attacker substitutes
her own user id (user id in the IdP or email address) with the victim’s one using
the ssl-enabled-MITM proxy. The victim’s user-id is either a publicly available
information (available from the victim’s public web page for the case of Google+
and Sina users) or easily guessable (in the case where the app use user-email-
address as the user name). Although Facebook has started to issue private per-
app user-id for each third-party app since May 2014, for backward compatibility
reasons, to-date, Facebook still uses the public user-id to identify early adopters
of a 3rd-party app. As such, a user of the latest version of a vulnerable app is
still susceptible to our attack as long as he/ she has signed into the app via OAuth
before May 2014.

5. Since the third-party backend server directly uses the user’s identity proof re-
turned from its client-side app to identify the app user WITHOUT further vali-
dation, the attacker can therefore successfully sign into the app as the victim and
in most cases have full access to the victim’s sensitive information hosted by the
third-party app’s backend server.

€.9 mm E facebook
@3rdparty ¢ attacker device ___ (b) IdP server
app server (c) client (d) client side] | -

side app 1. app info IdP app
—_

IMDb 4. AT+user
info
-—

1
1
1
1
1
1
1
1
1
1
1
i
1
3 i). AT i+ user info
1
1
1
1
1

ojul Jasn
+1v (1§

1
:
1
5ii). AT+ |
userinfo |
1

1

1

1

1

Domain under the
attacker’s control

Figure 5: The platform to exploit the discovered vulnerability

Besides being protected by SSL/HTTPS, the message exchanges between the client-
side of a 3rd-party mobile app and its backend server are often further encrypted or
signed by the 3rd-party app client/server. Therefore, it is usually easier to tamper the
user-id information returned by the IdP server to the IdP client-side app running on the
attacker’s mobile device.

In the case where the IdP client-side app, e.g., the one by Facebook, applies the
certificate pinning, the message sent by the IdP server to its client-side app will not
be accepted by the latter if it has been tampered by the attacker’s MITM proxy. As
a workaround, the attacker can simply uninstall the IdP client-side app so that the
IdP SDK (widely used by 3rd-party mobile apps for OAuth2.0) would automatically
downgrade to carry out OAuth authentication via the built-in webview browser. Being
a general built-in browser, the webview does not support the certificate pinning for
specific IdP. As a result, the attacker’s ssl-enabled-MITM proxy can now tamper the
user-id info sent by the IdP server to the client-side of the 3rd-party mobile app.

There are additional cases where the 1dPs choose not to support webview-based
OAuth-authentication. For such IdPs, the attacker can either use off-the-shelf tools
such as SSLUnpinning (if they use the native Android framework to implement the
certificate pinning) or reverse engineer the IdP client-side app to manually remove the
certificate pinning (if they use cutomized methods). To demonstrate the feasibility
of this approach, we have successfully implemented a proof-of-concept hack on the
Facebook app to manually disable its certificate pinning function so that we can feed it
with incorrect user-id info via the ssl-enabled-MITM proxy.

5 Empirical Results

We have studied the OAuth2.0-based APIs provided by three top-tier IdPs, namely,
Sina, Facebook and Google, which support SSO services for many 3rd party mobile
apps worldwide. The number of registered users in these IdPs ranges from more than
800 millions to over 2.5 billions as depicted in Table 1. Since there are more Chinese
moible apps supporting SSO services, we thereby select Top-200 mobile apps for Sina
while select Top-400 mobile apps for Google and Facebook. We then identify those
apps which use the OAuth2.0-based authentication service provided by one or more of
the 3 IdPs mentioned above. We finally test these apps against our OAuth2.0-based ex-
ploit. Our findings are alarming: on average, 41.21% of the mobile apps under test are
found to be vulnerable to the new attack. Table 2 depicts a partial list of the vulnerable
mobile apps we have identified so far: this incomplete list already includes two Top-5

Table 1: Statistics for the Prevalence of Vulnerable Mobile Apps

of Apps which
IdPs Alexa Rank zr?l;}ljﬂsﬁ(r)sns) use the SSO service f# of \glgg:rable
provided by the IdP
Sina Top 20 >800 83 58 (69.88%)
Facebook Top 10 >1,500 59 9 (15.25%)
Google Top 10 >2,500 40 8 (20%)

Table 2: A Partial List of Vulnerable Mobile Apps and the Sensitive Information They

Exposed

Type of 3rd-party # of App Type of Private/Sensitive Feasible Transactions
Apps 1dP Supported Downloads Information Exposed by the Attacker

(in Millions)
Travel Plan App Sina >270 travel itineraries -
Hotel Booking App | Facebook,Google | >5 lodging history pay for room bookings
Private Chat App Sina >10 private message/ album send forged messages
Dating App Sina >5 dating history, preferences purchase gifts
Finance Appl Sina >25 personal income/ expenses -
Finance App2 Sina >50 stock list of interest -
Call App Facebook >10 contact list and call history call for free
Live Video App Sina >15 the host the victim likes purchase gifts
Download App Sina >60 download history enjoy VIP speed
Shopping Apps Facebook, Sina >100 shopping history -
Browser Sina >40 browsing history -
Video Apps Sina >700 video watching history purchase videos
Music Apps Google, Sina >800 playlist purchase sound-tracks
News Apps Sina >350 news-reading history -

travel planning mobile apps, one popular hotel-booking app, a top private-chat app de-
signed for couples/ partners, a Top-5 dating app, two top-ranked personal finance apps,
as well as other popular apps for video-streaming or online-shopping, just to name
a few. Notice that the total number of downloads for this incomplete list of popular
but vulnerable apps already exceeds 2.4 billion. Based on the SSO-user-adoption-rate
of 51% according to the recent survey by Janrain [1], we conservatively estimate that
more than one billion of different types of mobile app accounts are susceptible to our
newly discovered attack as of this writing.

After signing into the victim’s vulnerable mobile app account using our exploit,
the attacker will have, in many cases, full access to the victim’s sensitive and private
information which is hosted by the backend server(s) of the vulnerable mobile app. Just
for the vulnerable apps listed in Table 2 alone, a massive amount of extremely sensitive
personal information is wide-open for grab: this includes detailed travel itineraries,
personal/ intimate communication archives, family/ private photos, personal finance
records, as well as the viewing or shopping history of the victims. For some of these
mobile applications, the online-currency/ service credits associated with the victim’s
account are also at the disposal of the attacker.

6 Recommended Remedies

Our discovery shows that it is urgent for the various parties involved to take the fol-
lowing preventive/ remedial actions when implementing or using OAuth2.0-based SSO
services:

1. IdPs should provide 3rd-party application developers clearer, and more security-
focused usage guidelines for their OAuth2.0-based SSO APIs.

2. The 3rd party backend server of a mobile app should not trust any information

even if it is signed by its own client-side mobile app or by the client-side mobile
app of the IdP. Trust should be anchored on the IdP server directly.

3. Instead of relying on a global user identifier for 3rd-party app authentication/
authorization, IdPs should issue private user identifier on a per-mobile-app basis.
In fact, such a practice has been adopted by Facebook since May 2014. However,
Facebook still insists on the global user identifier if the user started using the
mobile app before May 2014. As such, the attack is still applicable to the early
users of a vulnerable app.

4. 1dPs should conduct or insist on more thorough security testing of 3rd party
mobile apps, especially with respect to their implementation of Single-Sign-On
services via OAuth2.0 or other similar protocols such as the OpenID Connect
(OIDC) protocol.

7 Related Work

Despite the wide deployment, there are relatively few security analyses on the mobile
OAuth implementations. Chen et al. [2,3] show that most 3rd party mobile app devel-
opers do not debug the access token and a malicious app may be able to impersonate
a benign one if the Android intent is not properly used. Wang et al. [5] systemati-
cally summarize the known vulnerabilities for 15 mainstream IdPs. Compared to the
state-of-the-art, our attack is new: all the existing attacks against mobile OAuth imple-
mentations require an attacker to obtain a valid access token of the victim by interacting
with the victim via malicious apps or non-HTTPS channels, efc. On the contrary, our
attack can be conducted remotely and solely by the attacker without any involvement
of the victim. As a result, the impact of our newly discovered vulnerability and its
exploit are considerably wider and deeper than those proposed by other prior works.

8 Conclusion

In this paper, we have identified a previously unknown vulnerability which can be ex-
ploited remotely by the attacker to hijact the victim’s mobile app account without any
involvement with the victim. We have examined the implementations of Top-200 US
and Chinese Android Apps which use the OAuth2.0-based authentication service pro-
vided by three top-tier IdPs, and demonstrated to what extent these popular apps are
vulnerable to this new vulnerability. Our discovery shows that it is urgent for the vari-
ous parties to re-examine their SSO implementations and take the suggested remedial
actions accordingly.

9 Responsible Disclosure

In April 2016, we reported our findings to all the affected IdPs under study. All of
them acknowledged the security issue and pledged to help to notify the affected third-
party app developers. In particular, Sina already sent a specific notification to ALL 3rd

party app developers on its platform to inform them about the problem. The company
also granted us the maximum amount of reward credits allowed by their bug-bounty
program. It has also updated the Single-Sign-On section of its programming guide
for 3rd party developers accordingly. Google has acknowledged our finding via their
Google Security Hall of Fame and indicated that they will modify the corresponding
documentation for their 3rd party app developers. Facebook has informed us that they
are seeking a way to make their app developers aware of this problem.

Acknowledgments

This research is supported in part by the Innovation and Technology Commission of
Hong Kong (project no. ITS/216/15) and a NSFC Grant (No. 61572415).

References

[1] “Social login continues strong adoption,” 2014. [Online]. Available: http:
//janrain.com/blog/social-login-continues-strong-adoption/

[2] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, “OAuth demysti-
fied for mobile application developers,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2014.

[3] C. Eric, P. Tague, R. Kotcher, S. Chen, Y. Tian, and Y. Pei, “1000 ways to die in
mobile OAuth,” in BlackHat USA, 2016.

[4] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore, “OpenID
Connect core 1.0,” The OpenlD Foundation, p. S3, 2014.

[5] H. Wang, Y. Zhang, J. Li, H. Liu, W. Yang, B. Li, and D. Gu, “Vulnerability
assessment of OAuth implementations in Android applications,” in Proceedings of
the 31st Annual Computer Security Applications Conference. ACM, 2015.

[6] Q. Ye, G. Bai, K. Wang, and J. S. Dong, “Formal analysis of a Single Sign-On
protocol implementation for Android,” in 20th International Conference on Engi-
neering of Complex Computer Systems, ICECCS 2015, 2015.

10

http://janrain.com/blog/social-login-continues-strong-adoption/
http://janrain.com/blog/social-login-continues-strong-adoption/

	Introduction
	Background
	The Protocol Flow of OAuth 2.0 on the Mobile Platform
	The OpenID Connect Protocol
	Key Differences in the Website-based OAuth Implementations

	Different Types of Insecure Implementations
	Exploiting the Vulnerability
	Empirical Results
	Recommended Remedies
	Related Work
	Conclusion
	Responsible Disclosure

